AI-Ni-Sm (Aluminum-Nickel-Samarium)

V. Raghavan

Recently, [2008Del] determined an isothermal section for this system at 500 °C in the 40-100 at.% Al region, which depicts six ternary compounds.

Binary Systems

The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ ($D0_{11}$, Fe₃C-type orthorhombic), Ni₂Al₃ ($D5_{13}$ -type hexagonal, denoted δ), NiAl (B2, CsCltype cubic, denoted β), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al ($L1_2$, AuCu₃-type cubic, denoted γ'). The Al-Sm phase diagram [Massalski2, 2007Del] depicts the following intermediate phases: Sm₃Al₁₁ ($D1_3$, Al-deficient Al₄Ba-type tetragonal), SmAl₃ ($D0_{19}$, Ni₃Sn-type hexagonal), SmAl₂ (C15, MgCu₂-type cubic), SmAl (ErAl-type orthorhombic), and Sm₂Al (C23, Co₂Si-type orthorhombic). The Ni-Sm phase diagram [Massalski2] depicts a number of intermediate phases, none of which are relevant to the equilibria in Al-rich alloys discussed here.

Ternary Compounds

In addition to the four previously-known ternary compounds, Sm₄Ni₆Al₂₃ (τ_1), SmNiAl₄ (τ_2), SmNiAl₂ (τ_5), and SmNiAl (τ_6), [2008Del] found two new ternary compounds, SmNiAl₃ (τ_3) and SmNi₂Al₃ (τ_4). The structural details of these compounds are listed in Table 1. The notations τ_1 , τ_2 , etc. given above in brackets correspond to the numbers 1, 2, etc. used by [2008Del]. Along the line of constant Sm equal to 16.7 at.%, an additional phase SmNi₄Al (CaCu₅-type) was reported by [1978Tak], see Table 1. This phase, however, was not found by [2008Del] at 500 °C. [2008Del] pointed out that, in RNi_{5-x}Al_x (R = rare earth), CaCu₅-type of structure forms for x < 2 and the HoNi_{2.6}Ga_{2.4}-type of structure is found for $x \ge 2$.

Isothermal Section

With starting metals of 99.999% Al, 99.99% Ni, and 99.9% Sm, [2008Del] induction-melted 47 alloy samples in

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
$Sm_4Ni_6Al_{23}(\tau_1)$	69.7 Al	mC66	C2/m	Y ₄ Ni ₆ Al ₂₃	<i>a</i> = 1.5939
	18.2 Ni				b = 0.40967
	12.1 Sm				c = 1.8320
					$\beta = 113.09^{\circ}$
SmNiAl ₄ (τ_2)	64.7-66.7 Al	oC24	Cmcm	YNiAl ₄	a = 0.40948
	18.7-16.7 Ni				b = 1.5582
	16.7 Sm				c = 0.6610
SmNiAl ₃ (τ_3)	60 Al	oP20	Pnma	YNiAl ₃	a = 0.8197
	20 Ni				b = 0.4087
	20 Sm				c = 1.0713
$SmNi_2Al_3(\tau_4)$	49-52.5 Al	hP18	P6/mmm	HoNi _{2.6} Ga _{2.4}	a = 0.9141
	34.3-30.8 Ni				c = 0.4039
	16.7 Sm				
SmNiAl ₂ (τ_5)	50 Al	oC16	Cmcm	CuMgAl ₂	a = 0.4058
	25 Ni				b = 1.0519
	25 Sm				c = 0.6903
SmNiAl (τ ₆)	33.3 Al	hP9	$P\overline{6}2m$	ZrNiAl	a = 0.6986
	33.3 Ni				c = 0.4008
	33.3 Sm				
SmNi ₄ Al	16.7 Al	hP6	P6/mmm	CaCu ₅	a = 0.4980
	66.7 Ni				c = 0.4050
	16.7 Sm				

 Table 1
 Al-Ni-Sm crystal structure and lattice parameter data [2008Del]

Fig. 1 Al-Ni-Sm isothermal section at 500 °C in the 40-100 at.% Al range [2008Del]

the range of 40-100 at.% Al. The alloys were annealed at 500 °C for 20 d and quenched in water. The phase equilibria were studied with x-ray powder diffraction, optical microscopy and a scanning electron microscope equipped with energy dispersive x-ray analyzer. The measured compositions of the coexisting phases were listed. The isothermal section at 500 °C constructed by [2008Del] is shown in Fig. 1. The six ternary phases τ_1 through τ_6 are present. The phases SmNiAl₄ (τ_2) and SmNi₂Al₃ (τ_4) show a homogeneity range of about 2 and 3.5 at.% Al (or Ni) respectively at constant Sm content. The binary phases SmAl₂ and SmAl₃ dissolve up to 7 and 1.5 at.% Ni at constant Sm content. NiAl dissolves up to 1 at.% Sm.

References

- **1978Tak:** T. Takeshita, S.K. Malik, and W.E. Wallace, Hydrogen Absorption in RNi₄Al (R = Rare Earth) Ternary Compounds, *J. Solid State Chem.*, 1978, **23**, p 271-274
- **1993Oka:** H. Okamoto, Al-Ni (Aluminum-Nickel), *J. Phase Equilb.*, 1993, **14**(2), p 257-259
- **2007Del:** S. Delsante, R. Raggio, G. Borzone, and R. Ferro, A Revision of the Al-Rich Region of the Sm-Al Phase Diagram: The Sm₃Al₁₁ Phase, *J. Phase Equilib. Diffus.*, 2007, **28**(3), p 240-242
- **2008Del:** S. Delsante, R. Raggio, and G. Borzone, Phase Relations of the Sm-Ni-Al Ternary System at 500°C in the 40-100 at.% Al Region, *Intermetallics*, 2008, **16**, p 1250-1257